Law in the Internet Society

View   r4  >  r3  ...
JustinFlaumenhaftSecondEssay 4 - 29 Nov 2020 - Main.JustinFlaumenhaft
Line: 1 to 1
 
META TOPICPARENT name="SecondEssay"
Line: 15 to 15
 The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves [1].
Changed:
<
<
Thus, the field of artificial intelligence was born. It became clear, however, that the project of endowing a machine with intelligence would require much more than a single summer at Dartmouth to accomplish. In the years that followed, AI researchers set out to conquer various domains of human competence with computers. Early successes in machine-driven translation and pattern recognition stoked the optimism of the AI research community. Marvin Minksy, head of the MIT AI Lab, announced that “within a generation we will have intelligent computers like HAL in the film, 2001” [2].
>
>
Thus, the field of artificial intelligence was born. It became clear, however, that the project of endowing a machine with intelligence would require much more than a single summer at Dartmouth to accomplish. In the years that followed, AI researchers set out to conquer many different domains of human competence with computers. Early successes in machine-driven translation and pattern recognition stoked the optimism of the AI research community. Marvin Minksy, head of the MIT AI Lab, announced that “within a generation we will have intelligent computers like HAL in the film, 2001” [2].
 

The Gadfly of AI

Line: 24 to 24
  In Dreyfus’ view, the AI researchers fundamentally misunderstood the phenomenon they were attempting to emulate. According to Dreyfus, the AI researchers tended to think of the human mind in much the same way as they thought of computers: as “general-purpose symbol manipulators.” On this view, the human mind was continuous with a simple digital calculator. Both worked by processing information, in the form of binary bits (via neurons or transistors), according to formal rules. This view contemplated a world organized neatly into a set of independent, determinate facts and governed by strict rules—the perfect substrate for a computer-like mind [2].
Changed:
<
<
Drawing from phenomenology, Dreyfus highlighted some crucial differences between the ways in which humans and computers functioned. Dreyfus stressed that humans, unlike computers, are embodied beings that participate in a world of relevance, meaning, and goals. On Dreyfus’ view, these characteristics of human existence were essential to human-like intelligence. He doubted that a disembodied machine detachedly manipulating symbols and following instructions could exhibit genuinely intelligent behavior [2].
>
>
Drawing from phenomenology, Dreyfus highlighted some crucial differences between humans and computers. Dreyfus stressed that humans, unlike computers, are embodied beings that participate in a world of relevance, meaning, and goals. On Dreyfus’ view, these characteristics of human existence were essential to human-like intelligence. He doubted that a disembodied machine detachedly manipulating symbols and following instructions could exhibit genuinely intelligent behavior [2].
 
Changed:
<
<
Dreyfus emphasized that human judgements are informed by context-dependent factors whose nuances and indeterminacy are difficult to account for in even a very comprehensive set of instructions. Dreyfus contended that a person’s very useful sense of what is “relevant” to a particular situation could not be reduced to a system of formal rules. Likewise, common sense, social practices, and tacit skills, which involved more than mere calculation, were extremely difficult, if not impossible, to commit to rigid rules. Dreyfus predicted that the AI research program would soon face insurmountable obstacles if it continued on its course [2].
>
>
Dreyfus emphasized that human judgements are informed by context-dependent factors whose nuances and indeterminacy are difficult to account for in even a very comprehensive set of instructions. Dreyfus contended that a person’s very useful sense of what is “relevant” to a particular situation could not be reduced to a system of formal rules. Likewise, common sense, social practices, and tacit skills, which involved more than mere calculation, were extremely difficult, if not impossible, to formalize. Dreyfus predicted that the AI research program would soon face insurmountable obstacles if it continued on its course [2].
 

Tree Climbing with One's Eyes on the Moon

Line: 40 to 40
 

The Rise of Big Data

Changed:
<
<
The preceding history is useful for putting contemporary AI into perspective. Amid calls to take precautions against super-intelligent AI, it is worth bearing in mind the history of overzealousness about the capabilities of AI as well as AI's proven limitations. The real threat posed by “AI” is not the fantasy of super-intelligence, but rather the use of the technology by surveillance capitalists to monetize the data it extracts from its users and influence their behavior.
>
>
The preceding history is useful for putting contemporary AI into perspective. Amid calls to take precautions against super-intelligent AI, it is worth bearing in mind the history of overzealousness about the capabilities of AI as well as AI's proven limitations. The real threat posed by “AI” is not the fantasy of super-intelligence, but rather the use of the technology by surveillance capitalists to mine the data of its users and influence their behavior.
  The ultimate disillusionment with the grand AI ambitions hatched at the Dartmouth conference led the field of AI in a different direction. Interest turned from symbolic AI to perceptrons—loosely modeled on neurons— and ultimately gave rise to the machine learning models like artificial neural networks, which define the contemporary paradigm of AI.

If symbolic AI relied upon the cleverness of its programmers, machine learning relies equally upon the quantity of its training data: machine learning models require vast volumes of training data to work well. This fact plays a critical role in incentivizing internet companies to extract data from users. Facebook and Google need data to train the algorithms whose services they sell to advertisers.

Changed:
<
<
Thus, in a certain sense, the failures of Symbolic AI, by leading to the alternative approaches offered by machine learning, fueled the demand for data and ushered in a new chapter of surveillance capitalism. The quest to build computers which emulated human thought ended not with intelligent computers, but with computers that preyed on human intelligence by monitoring and influencing it.
>
>
Thus, in a certain sense, the failures of Symbolic AI, by leading to the alternative approaches offered by machine learning, fueled the demand for data and ushered in a new chapter of surveillance capitalism. The quest to build computers that emulated human thought ended not with intelligent computers, but with computers that preyed on human intelligence by monitoring and influencing it.
 [1] http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf

Revision 4r4 - 29 Nov 2020 - 04:33:13 - JustinFlaumenhaft
Revision 3r3 - 28 Nov 2020 - 17:13:51 - JustinFlaumenhaft
This site is powered by the TWiki collaboration platform.
All material on this collaboration platform is the property of the contributing authors.
All material marked as authored by Eben Moglen is available under the license terms CC-BY-SA version 4.
Syndicate this site RSSATOM